General properties of some families of graphs defined by systems of equations

نویسندگان

  • Felix Lazebnik
  • Andrew J. Woldar
چکیده

In this paper we present a simple method for constructing infinite families of graphs defined by a class of systems of equations over commutative rings. We show that the graphs in all such families possess some general properties including regularity and bi-regularity, existence of special vertex colorings, and existence of covering maps — hence, embedded spectra — between every two members of the same family. Another general property, recently discovered, is that nearly every graph constructed in this manner edge-decomposes either the complete, or complete bipartite, graph which it spans. In many instances, specializations of these constructions have proved useful in various graph theory problems, but especially in many extremal problems. A short survey of the related results is included. We also show that the edgedecomposition property allows one to improve existing lower bounds for some multicolor Ramsey numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$Z_k$-Magic Labeling of Some Families of Graphs

For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic}  if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$  defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$  the group of integers modulo $k...

متن کامل

Snakes and Caterpillars in Graceful Graphs

Graceful labelings use a prominent place among difference vertex labelings. In this work we present new families of graceful graphs all of them obtained applying a general substitution result. This substitution is applied here to replace some paths with some trees with a more complex structures. Two caterpillars with the same size are said to be textit{analogous} if thelarger stable sets, in bo...

متن کامل

On ‎c‎omputing the general Narumi-Katayama index of some ‎graphs

‎The Narumi-Katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎Let $G$ be a ‎simple graph with vertex set $V = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $G$‎. ‎The Narumi-Katayama ‎index is defined as $NK(G) = prod_{vin V}d(v)$‎. ‎In this paper,‎ ‎the Narumi-Katayama index is generalized using a $n$-ve...

متن کامل

Some Families of Graphs, Hypergraphs and Digraphs Defined by Systems of Equations: a Survey

The families of graphs defined by a certain type of system of equations over commutative rings have been studied and used since 1990s, and the only survey of these studies appeared in 2001. In this paper we mostly concentrate on the related results obtained in the last fifteen years, including generalizations of these constructions to digraphs and hypergraphs. We also offer a unified elementary...

متن کامل

Narumi-Katayama Polynomial of Some Nano Structures

‎    The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2001